Effect of rhPDGF-BB delivery on mediators of periodontal wound repair.

نویسندگان

  • Jason W Cooke
  • David P Sarment
  • Louis A Whitesman
  • Sarah E Miller
  • Qiming Jin
  • Samuel E Lynch
  • William V Giannobile
چکیده

Growth factors such as platelet-derived growth factor (PDGF) exert potent effects on wound healing including the regeneration of tooth-supporting structures. This investigation examined the effect of the local delivery of PDGF-BB when combined with reconstructive periodontal surgery on local wound fluid (WF) levels of PDGF-AB, vascular endothelial growth factor (VEGF), and bone collagen telopeptide (ICTP) in humans with advanced periodontitis. Sixteen patients exhibiting localized periodontal osseous defects were randomized to one of three groups (beta-TCP carrier alone, beta-TCP + 0.3 mg/mL of recombinant human PDGF-BB [rhPDGF-BB], or beta-TCP + 1.0 mg/mL of rhPDGF-BB) and monitored for 6 months. WF was harvested and analyzed for PDGF-AB, VEGF, and ICTP WF levels. Teeth contralateral to the target lesions served as controls. Increased levels of VEGF in the WF was observed for all surgical treatment groups with the 1.0 mg/mL rhPDGF-BB group showing the most pronounced difference at 3 weeks in the AUC analysis versus control (p < 0.0001). PDGF-AB WF levels were increased for the carrier alone group compared to both rhPDGFBB groups. Low-dose rhPDGF-BB application elicited increases in ICTP at days 3-5 in the wound healing process, suggesting a promotion of bone turnover at early stages of the repair process (p < 0.02). These results demonstrate contrasting inducible expression patterns of PDGF-AB, VEGF, and ICTP during periodontal wound healing in humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of rhPDGF-BB on bone turnover during periodontal repair.

PURPOSE Growth factors such as platelet-derived growth factor (PDGF) exert potent effects on wound healing including the regeneration of periodontia. Pyridinoline cross-linked carboxyterminal telopeptide of type I collagen (ICTP) is a well-known biomarker of bone turnover, and as such is a potential indicator of osseous metabolic activity. The objective of this study was to evaluate the release...

متن کامل

Promoting Diabetic Wound Therapy Using Biodegradable rhPDGF-Loaded Nanofibrous Membranes

The nanofibrous biodegradable drug-loaded membranes that sustainably released recombinant human platelet-derived growth factor (rhPDGF-BB) to repair diabetic wounds were developed in this work.rhPDGF-BB and poly(lactic-co-glycolic acid) (PLGA) were mixed in hexafluoroisopropyl alcohol, followed by the electrospinning of the solutions into biodegradable membranes to equip the nanofibrous membran...

متن کامل

Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone.

BACKGROUND Purified recombinant human platelet-derived growth factor BB (rhPDGF-BB) is a potent wound healing growth factor and stimulator of the proliferation and recruitment of both periodontal ligament (PDL) and bone cells. The hypothesis tested in this study was that application of rhPDGF-BB incorporated in bone allograft would induce regeneration of a complete new attachment apparatus, inc...

متن کامل

Bioactivity and stability of endogenous fibrogenic factors in platelet-rich fibrin.

Platelet-rich fibrin (PRF) is an autologous fibrin sealant (FS) enriched with a platelet concentrate (> 1,000,000 platelets/microL) produced by the automated Vivostat system and used to enhance wound healing. The effects of PRF were compared with supernatant from thrombin-activated platelet concentrate, recombinant human platelet-derived growth factor (rhPDGF) isoforms, and a homologous FS in c...

متن کامل

Nanofibrous Scaffolds Incorporating PDGF-BB Microspheres Induce Chemokine Expression and Tissue Neogenesis In Vivo

Platelet-derived growth factor (PDGF) exerts multiple cellular effects that stimulate wound repair in multiple tissues. However, a major obstacle for its successful clinical application is the delivery system, which ultimately controls the in vivo release rate of PDGF. Polylactic-co-glycolic acid (PLGA) microspheres (MS) in nanofibrous scaffolds (NFS) have been shown to control the release of r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2006